Moving Average Phasenverschiebung




Moving Average PhasenverschiebungDie Diagramme von Marvins Diat in diesem Kapitel wurden aus einem Excel-Arbeitsblatt erzeugt, das enthalten ist, um es Ihnen zu ermoglichen, weiter auf eigene Faust zu experimentieren und ein besseres Gefuhl dafur zu bekommen, wie sich die gleitenden Durchschnitte den Gesamttrend bei Daten, die gro?en kurzfristigen Schwankungen unterliegen, identifizieren. Um dieses Modell zu verwenden, laden Sie das Arbeitsblatt SMOOTH. XLS in Excel. Sie sollten so etwas auf Ihrem Bildschirm sehen. Je nach Monitor und Grafikkarte mussen Sie die Gro?e des Fensters andern, um das gesamte Arbeitsblatt zu sehen. Das Diagramm zeigt die wahre Trendlinie als dunne rote Linie. Dieser Trend wird durch zufallige Variationen von Tag zu Tag maskiert, was dazu fuhrt, dass tagliche Messungen als grune Diamanten gezeichnet werden, die durch gelbe Linien verbunden sind. Der von dem ausgewahlten gleitenden Durchschnitt extrahierte Trend wird als dicke blaue Linie gezeichnet. Je naher die blaue Linie der roten Linie entspricht, die den wahren Trend anzeigt, desto effektiver ist der gleitende Durchschnitt bei der Ausfilterung der kurzfristigen Zufallsvariationen in den Messungen. Sie konnen das gleitende Durchschnittsmodell durch Eingabe von Werten in den folgenden Feldern des Bedienfelds steuern. Glattung. Dieser Parameter wahlt den Typ des gleitenden Mittelwerts und den Grad der Glattung aus. Wenn positiv, wird ein exponentiell geglattetes gleitendes Mittel mit Glattungskonstanten gleich Glattung verwendet. Es sind nur Glattungskonstanten zwischen 0 und 1 gultig. Falls negativ, wird ein einfacher gleitender Durchschnitt uber die letzten - Glattungstage verwendet. Um die Effekte eines 20-tagigen einfachen gleitenden Durchschnitts zu sehen, geben Sie -20 in die Glattungszelle ein. Der Noise-Wert gibt die tagliche zufallige Storung des Grundtrends an. Wenn Sie Noise auf 10 einstellen, werden die gemessenen Werte nach dem Zufallsprinzip 5 aus dem wahren Trend verschoben. Die zufallige Verschiebung von Punkten in dem primaren Trend andert sich jedes Mal, wenn das Arbeitsblatt neu berechnet wird. Um die Auswirkungen einer anderen zufalligen Verschiebung des aktuellen Trends zu zeigen, drucken Sie, um die Neuberechnung zu erzwingen. Da ein gleitender Durchschnitt auf vorherige Messungen zuruckblickt, verzogert er den aktuellen Trend. Sie konnen den gleitenden Durchschnitt ruckwarts verschieben, um diese Verzogerung zu verwerfen, indem Sie die Anzahl der Verschiebungstage in der Shift-Zelle eingeben. Damit konnen Sie die Form der Trendkurve vergleichen, die durch verschiedene Bewegungsdurchschnitte mit dem ursprunglichen Trend gefunden wird. Ein Shift-Wert von Null deaktiviert die Verschiebung und erzeugt einen gleitenden Durchschnitt, der sich, bezogen auf den aktuellen Trend, genau so verhalt, wie er taglich aus aktuellen Daten berechnet wird. Fur einen einfachen gleitenden Durchschnitt wird eine Verschiebung der halben Tage des Glattens im allgemeinen den Trend und den gleitenden Durchschnitt ausgleichen. Fur einen exponentiell geglatteten gleitenden Durchschnitt kann ein Glattungswert von 0,9 mit einer Verschiebung von etwa 10 Amplitude ausgerichtet werden. Der in diesem Modell verwendete Trend wird durch eine Kosinusfunktion erzeugt. Amplitude steuert das Ausma? des Trends, die Spitze-Spitze-Variation ist das Doppelte des Amplitudenwerts. Rate steuert den Zeitraum des primaren Trends, angegeben als die Anzahl der Tage von Trog zu Peak und umgekehrt. Wie Sie Rate verringern. Der Trend variiert schneller, so dass ein kurzfristiger gleitender Durchschnitt folgen muss. Ich kann mir nicht vorstellen, eine wirklich lineare Phase und Kausal-Filter, die wirklich IIR ist. Ich kann nicht sehen, wie Sie Symmetrie erhalten wurden, ohne dass die Sache FIR ware. Und, semantisch, wurde ich ein Truncated IIR (TIIR) eine Methode der Implementierung einer Klasse von FIR aufrufen. Und dann erhalten Sie nicht lineare Phase, es sei denn Sie zum filtfilt Ding mit ihm, blockweise, sorta wie Powell-Chau. Ndash robert bristow-johnson November 26 15 am 3:32 Diese Antwort erklart, wie filtfilt funktioniert. Ndash Ein Nullphasen-Gleit-Durchschnittsfilter ist ein FIR-Filter mit ungerader Lange mit Koeffizienten, wobei N die (ungerade) Filterlange ist. Da hn fur nlt0 Werte ungleich Null hat, ist es nicht kausal, und folglich kann es nur durch Hinzufugen einer Verzogerung, d. h. indem es kausal gemacht wird, implementiert werden. Beachten Sie, dass Sie einfach nicht verwenden konnen Matlabs filtfilt Funktion mit diesem Filter, denn obwohl Sie Null Phase (mit einer Verzogerung) erhalten wurde, wird die Gro?e der Filterubertragungsfunktion quadriert, entsprechend einer dreieckigen Impulsantwort (dh Eingang Proben weiter entfernt von der Stromprobe weniger Gewicht). Diese Antwort erklart im Detail, was filtfilt tut. Der Wissenschaftler und Ingenieure Leitfaden fur digitale Signalverarbeitung Von Steven W. Smith, Ph. D. In der mathematischen Form: Wenn xn harr MagX f amp PhaseX f, dann ergibt sich eine Verschiebung im Zeitbereich: xns 8596 MagX f amp PhaseX f 2pi sf (wobei f als Bruch ausgedruckt wird Der Abtastrate, die zwischen 0 und 0,5 liegt). In Worten, eine Verschiebung von s Proben im Zeitbereich verlasst die Gro?e unverandert, sondern fugt einen linearen Begriff in die Phase, 2960 sf. Werfen wir einen Blick auf ein Beispiel, wie dies funktioniert. Abbildung 10-3 zeigt, wie die Phase beeinflusst wird, wenn die Zeitbereichswellenform nach links oder rechts verschoben wird. Die Gro?e ist in dieser Abbildung nicht enthalten, da sie nicht interessant ist, wird sie nicht durch die Zeitbereichsverschiebung geandert. In den Fig. (A) bis (d) wird die Wellenform allmahlich von dem Peak entfernt, der auf der Probe 128 zentriert ist, damit sie auf dem Abtastwert 0 zentriert ist. Diese Sequenz von Graphen berucksichtigt, dass die DFT den Zeitbereich als kreisformig ansieht, wenn Abschnitte der Wellenformausgang nach rechts, sie erscheinen auf der linken Seite. Die Zeitbereichswellenform in Fig. 10-3 ist um eine vertikale Achse symmetrisch, dh die linke und die rechte Seite sind spiegelbildlich zueinander. Wie in Kapitel 7 erwahnt, werden Signale mit dieser Symmetrieart als lineare Phase bezeichnet. Da die Phase ihres Frequenzspektrums eine Gerade ist. Ebenso werden Signale, die diese Links-Rechts-Symmetrie nicht haben, als nichtlineare Phase bezeichnet. Und haben Phasen, die etwas anderes als eine gerade Linie sind. Die Fig. (E) bis (h) zeigen die Phase der Signale in (a) bis (d). Wie in Kapitel 7 beschrieben, werden diese Phasensignale ausgepackt. So da? sie ohne die Diskontinuitaten auftreten, die mit dem Halten des Werts zwischen 960 und -960 verbunden sind. Wenn die Zeitbereichswellenform nach rechts verschoben wird, bleibt die Phase eine gerade Linie, erfahrt aber eine Abnahme der Steigung. Wenn der Zeitbereich nach links verschoben wird, steigt die Steigung. Dies ist die wichtigste Eigenschaft, die Sie aus diesem Abschnitt merken mussen, dass eine Verschiebung im Zeitbereich der Anderung der Steilheit der Phase entspricht. Die Figuren (b) und (f) zeigen einen einzigartigen Fall, bei dem die Phase vollstandig Null ist. Dies tritt auf, wenn das Zeitbereichssignal symmetrisch um den Abtastwert Null ist. Auf den ersten Blick kann diese Symmetrie in (b) nicht offensichtlich sein, es kann jedoch erscheinen, dass das Signal um die Probe 256 (d. H. N & sub2;) symmetrisch ist. Denken Sie daran, dass die DFT den Zeitbereich als kreisformig ansieht, wobei der Abtastwert Null inharent mit dem Abtastwert N-1 verbunden ist. Jedes Signal, das um die Probe Null symmetrisch ist, ist auch symmetrisch um die Probe N 2 und umgekehrt. Bei Verwendung von Mitgliedern der Fourier-Transform-Familie, die den Zeitbereich nicht als periodisch (wie die DTFT) betrachten, muss die Symmetrie um die Abtastung Null liegen, um eine Nullphase zu erzeugen. Die Figuren (d) und (h) zeigen etwas Ratselhaftes. Zuerst stellen Sie sich vor, dass (d) durch Verschieben der Wellenform in (c) etwas mehr nach rechts gebildet wurde. Das bedeutet, dass die Phase in (h) eine etwas negative negative Steigung als in (g) haben wurde. Diese Phase ist als Linie 1 dargestellt. Als nachstes stellen wir uns vor, dass (d) durch Starten mit (a) und Verschieben nach links gebildet wurde. In diesem Fall sollte die Phase eine etwas positivere Steigung haben als (e), wie durch die Linie 2 dargestellt ist. Schlie?lich ist zu beachten, da? (d) um die Probe N & sub2; symmetrisch ist und daher eine Nullphase haben sollte, wie dies durch dargestellt ist Zeile 3. Welche dieser drei Phasen ist richtig Sie sind alle, je nachdem, wie die 960 und 2960 Phasen-Unklarheiten (diskutiert in Kapitel 8) angeordnet sind. Zum Beispiel unterscheidet sich jede Abtastung in Zeile 2 von dem entsprechenden Abtastwert in Zeile 1 durch ein ganzzahliges Vielfaches von 2960, was sie gleich macht. Um die Linie 3 mit den Linien 1 und 2 zu verbinden, mussen auch die 960 Unklarheiten berucksichtigt werden. Um zu verstehen, warum sich die Phase so verhalt, wie sie es tut, stellen Sie sich vor, eine Wellenform um eine Probe nach rechts zu verschieben. Dies bedeutet, dass alle Sinusoide, aus denen die Wellenform besteht, ebenfalls um eine Probe nach rechts verschoben werden mussen. Abbildung 10-4 zeigt zwei Sinusoide, die ein Teil der Wellenform sein konnen. In (a) hat die Sinuswelle eine sehr niedrige Frequenz, und eine Abtastverschiebung ist nur ein kleiner Bruchteil eines vollen Zyklus. In (b) hat die Sinuskurve eine Frequenz von der Halfte der Abtastrate, die hochste Frequenz, die in den abgetasteten Daten existieren kann. Eine Abtastverschiebung bei dieser Frequenz ist gleich einem gesamten 12-Zyklus oder 960 rad. Das hei?t, wenn eine Verschiebung in Form einer Phasenanderung ausgedruckt wird, wird sie proportional zu der Frequenz der Sinuskurve, die verschoben wird. Betrachten wir zum Beispiel eine Wellenform, die um den Nullpunkt symmetrisch ist und daher eine Nullphase aufweist. Abbildung 10-5a zeigt, wie sich die Phase dieses Signals andert, wenn sie nach links oder rechts verschoben wird. Bei der hochsten Frequenz, der Halfte der Abtastrate, erhoht sich die Phase um 960 fur jede Abtastverschiebung nach links und verringert sich um 960 fur jede Abtastverschiebung nach rechts. Bei Nullfrequenz gibt es keine Phasenverschiebung, und alle Frequenzen folgen in einer Geraden. Alle bisher verwendeten Beispiele sind lineare Phase. Abbildung 10-5b zeigt, dass nichtlineare Phasensignale auf die Verschiebung in der gleichen Weise reagieren. In diesem Beispiel ist die nichtlineare Phase eine Gerade mit zwei Rechteckimpulsen. Wenn der Zeitbereich verschoben wird, werden diese nichtlinearen Merkmale einfach der sich andernden Steigung uberlagert. Was passiert in den realen und imaginaren Teilen, wenn die Zeitbereichswellenform verschoben wird, erinnern daran, dass Frequenzdomanensignale in rechteckiger Schreibweise fur den Menschen kaum zu verstehen sind. Die Real - und Imaginarteile sehen typischerweise wie zufallige Oszillationen ohne sichtbares Muster aus. Wenn das Zeitbereichssignal verschoben wird, werden die wackligen Muster der Real - und Imaginarteile noch oszillierender und schwer zu interpretieren. Verschwenden Sie nicht Ihre Zeit versucht, diese Signale zu verstehen, oder wie sie durch Zeitbereich Verschiebung geandert werden. Abbildung 10-6 zeigt, welche Informationen in der Phase enthalten sind. Und welche Information in der Gr?e enthalten ist. Die Wellenform in (a) hat zwei sehr unterschiedliche Merkmale: eine steigende Flanke bei der Probennummer 55 und eine fallende Flanke bei der Probennummer 110. Kanten sind sehr wichtig, wenn Information in Form einer Wellenform codiert wird. Eine Kante zeigt an, wenn etwas passiert, indem man alles, was links ist, von dem, was auf der rechten Seite ist, teilt. Es ist Zeitbereich codierte Informationen in seiner reinsten Form. Um die Demonstration zu beginnen, wird die DFT aus dem Signal in (a) genommen und das Frequenzspektrum in polare Notation umgewandelt. Um das Signal in (b) zu finden, wird die Phase durch Zufallszahlen zwischen -960 und 960 ersetzt und die inverse DFT verwendet, um die Zeitbereichswellenform zu rekonstruieren. Mit anderen Worten, (b) basiert nur auf den in der Gro?e enthaltenen Informationen. In ahnlicher Weise wird (c) gefunden, indem die Gr?e durch kleine Zufallszahlen ersetzt wird, bevor die inverse DFT verwendet wird. Dies macht den Wiederaufbau von (c) ausschlie?lich auf der Grundlage der in der Phase enthaltenen Informationen. Das Ergebnis Die Orte der Kanten sind klar in (c), aber vollig fehlen in (b). Dies liegt daran, dass eine Kante gebildet wird, wenn viele Sinusoide an der gleichen Stelle ansteigen, nur moglich, wenn ihre Phasen koordiniert sind. Kurz gesagt, ist ein Gro?teil der Informationen uber die Form der Zeitbereichswellenform in der Phase enthalten. Anstatt die Gro?e. Dies kann mit Signalen im Kontrast stehen, deren Information im Frequenzbereich codiert ist, wie beispielsweise Audiosignale. Die Gro?e ist fur diese Signale am wichtigsten, wobei die Phase nur eine untergeordnete Rolle spielt. In spateren Kapiteln werden wir sehen, dass diese Art von Verstandnis Strategien fur die Gestaltung von Filtern und andere Methoden der Verarbeitung von Signalen liefert. Das Verstandnis, wie Information in Signalen dargestellt wird, ist immer der erste Schritt im erfolgreichen DSP. Warum entspricht die Links-Rechts-Symmetrie einer Null - (oder Linear-) Phase Abbildung 10-7 liefert die Antwort. Ein solches Signal kann in eine linke und eine rechte Halfte zerlegt werden, wie in (a), (b) und (c) gezeigt. Die Probe im Symmetriezentrum (null in diesem Fall) ist gleichma?ig auf die linke und die rechte Halfte aufgeteilt, so dass die beiden Seiten perfekte Spiegelbilder voneinander sind. Die Gro?en dieser beiden Halften sind identisch. Wie in (e) und (f) gezeigt, wahrend die Phasen einander entgegengesetzt sind, wie in (h) und (i). Dabei fallen zwei wichtige Konzepte aus. Zuerst wird jedes Signal, das symmetrisch zwischen links und rechts ist, eine lineare Phase haben, da die nichtlineare Phase der linken Halfte genau die nichtlineare Phase der rechten Halfte aufhebt. Zweitens stellen Sie sich vor, Kippen (b), so dass es (c) wird. Dieser Links-Rechts-Flip im Zeitbereich tut nichts zur Gro?e, sondern andert das Vorzeichen von jedem Punkt in der Phase. Ahnlich andert das Andern des Vorzeichens der Phase das Zeitbereichssignal von links nach rechts. Wenn die Signale kontinuierlich sind, ist der Flip um Null. Wenn die Signale diskret sind, ist der Flip um Abtastwert Null und Abtastwert N & sub2; gleichzeitig. Andern der Vorzeichen der Phase ist eine gemeinsame genug, dass es seinen eigenen Namen und Symbol gegeben. Der Name ist eine komplexe Konjugation. Und es wird dargestellt, indem ein Stern auf die obere rechte Seite der Variablen gesetzt wird. Wenn z. B. X f aus MagX f und Phase X f besteht, dann wird X f komplex konjugiert und besteht aus MagX f und - PhaseX f. In rechtwinkliger Schreibweise wird die komplexe Konjugiertheit gefunden, indem man den Realteil allein la?t und das Vorzeichen des Imaginarteils andert. Mathematisch, wenn X f aus ReX f und ImX f zusammengesetzt ist, besteht X f aus ReX f und - ImX f. Hier sind einige Beispiele, wie das komplexe Konjugat in DSP verwendet wird. Hat x n eine Fourier-Transformierte von X f, so hat x-n eine Fourier-Transformation von X 8727 f. In Worten entspricht das Umschalten des Zeitbereichs von links nach rechts der Anderung des Vorzeichens der Phase. Als weiteres Beispiel, erinnern aus Kapitel 7, dass die Korrelation als eine Faltung durchgefuhrt werden kann. Dies geschieht, indem man eines der Signale nach links dreht. In mathematischer Form ist a n b n eine Faltung, wahrend a n b - n eine Korrelation ist. Im Frequenzbereich entsprechen diese Operationen A f mal B f bzw. A f mal B f. Als letztes Beispiel betrachten wir ein beliebiges Signal x n und sein Frequenzspektrum X f. Das Frequenzspektrum kann durch Multiplizieren mit seiner komplex konjugiert, dh X f mal X f, auf Nullphase geandert werden. In Worten, was Phase X f geschieht, wird durch Hinzufugen seines Gegenteils aufgehoben werden (denken Sie daran, wenn Frequenzspektren multipliziert werden, werden ihre Phasen hinzugefugt). In dem Zeitbereich bedeutet dies, dass x n x - n (ein Signal, das mit einer links-rechts-gekippten Version von sich selbst gefaltet wird) eine Links-Rechts-Symmetrie um die Abtast-Null aufweist, unabhangig davon, was x n ist. Fur viele Ingenieure und Mathematiker ist diese Art der Manipulation DSP. Wenn Sie mit dieser Gruppe kommunizieren mochten, sollten Sie sich an die Verwendung ihrer Sprache gewohnen.